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Abstract. We apply our recent formalism establishing new connections between the geometry of moving
space curves and soliton equations, to the nonlinear Schrödinger equation (NLS). We show that any given
solution of the NLS gets associated with three distinct space curve evolutions. The tangent vector of the
first of these curves, the binormal vector of the second and the normal vector of the third, are shown to
satisfy the integrable Landau-Lifshitz (LL) equation Su = S × Sss, (S2 = 1). These connections enable
us to find the three surfaces swept out by the moving curves associated with the NLS. As an example,
surfaces corresponding to a stationary envelope soliton solution of the NLS are obtained.

PACS. 02.40.Hw Classical differential geometry – 05.45.Yv Solitons – 75.10.Hk Classical spin models

1 Introduction

A procedure to associate a completely integrable equa-
tion [1] supporting soliton solutions with the evolution
equation of a moving space curve was found some time
ago by Lamb [2]. Recently, we showed [3] that there are
two other distinct ways of making such a connection. Thus
three different space curve evolutions get associated with a
given solution of the integrable equation. As an illustrative
example, we considered the nonlinear Schrödinger equa-
tion (NLS) and demonstrated that the three associated
moving curves had distinct curvature and torsion func-
tions. We also obtained the curve parameters for a one-
soliton solution of the NLS. However, as is well known [4],
the explicit construction of an evolving space curve or
swept-out surface, using the corresponding expressions for
the curvature and torsion is a nontrivial task in general.
For an integrable nonlinear partial differential equation,
a method proposed by Sym [5] shows that using its Lax
pair, a certain surface that gets associated with a given so-
lution can be constructed, and this has been applied [6] to
the NLS. In this paper, we use a different approach which
obtains two more surfaces (or moving curves), in addition
to the above surface. For the NLS, we first use the ex-
pressions [3] for the associated curve parameters to show
that the three space curve evolutions all map to the inte-
grable Landau-Lifshitz (LL) equation [7] for the time evo-
lution of a spin vector S of a continuous one-dimensional
Heisenberg ferromagnet. In other words, the tangent vec-
tor of the first moving curve, the binormal vector of the
second, and the normal vector of the third, are shown to
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satisfy the LL equation. The first of these results is essen-
tially the converse of the important mapping from the LL
equation to the NLS which Lakshmanan [8] had obtained,
by identifying S with the tangent vector. Exploiting the
above connections enables us to explicitly construct the
three swept-out surfaces. Surfaces associated with a sta-
tionary envelope soliton of the NLS are presented.

2 New connections between moving curves
and soliton equations

A moving space curve embedded in three dimensions
may be described [9] using the following two sets of
Frenet-Serret equations [4] for the orthonormal triad of
unit vectors made up of the tangent t, normal n and the
binormal b:

ts = Kn ; ns = −Kt + τb ; bs = −τn (1)

tu = gn + hb ; nu = −gt + τ0b ; bu = −ht− τ0n.
(2)

Here, s and u denote the arclength and time respectively.
The parameters K and τ represent the curvature and tor-
sion of the space curve. The parameters g, h and τ0 are, at
this stage, general parameters which determine the time
evolution of the curve. All the parameters are functions
of both s and u. The subscripts s and u stand for partial
derivatives. On requiring the compatibility conditions

tsu = tus ; nsu = nus ; bsu = bus, (3)
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a short calculation using equations (1, 2) leads to

Ku = (gs − τh); τu = (τ0)s +Kh; hs = (Kτ0 − τg).
(4)

Formulation I: We shall refer to Lamb’s procedure [2] for
associating moving space curves with soliton equations as
“formulation I”, to distinguish it from two others to fol-
low. We remark that although equation (2) was not in-
troduced by Lamb, his formulation implied them. As we
shall see, its explicit introduction [9] proves very conve-
nient in unraveling the geometry of the associated soliton
equation. This formulation was motivated by Hasimoto’s
earlier work [10], which had established a connection be-
tween the local induction equation for a vortex filament
in a fluid [11] and the NLS. Here, one proceeds by defin-
ing a complex vector N = (n + ib) exp

[
i
∫
τ ds

]
and the

Hasimoto function

ψ(s, u) = K exp
[
i
∫
τ ds

]
. (5)

By writing Ns, ts,Nu and tu in terms of t and N, impos-
ing the compatibility condition Nsu = Nus, and equating
the coefficients of t and N in it, one obtains

ψu + γ1s + (1/2)
[∫

(γ1ψ
∗ − γ∗1ψ) ds

]
ψ = 0, (6)

where

γ1 = −(g + ih) exp
[
i
∫
τ ds

]
. (7)

The key step in Lamb’s work is that an appropriate choice
of γ1 as a function of ψ and its derivatives can yield a
known integrable equation for ψ. Comparing a solution of
this equation with the Hasimoto function (5) yields the
curvature K and torsion τ of the moving space curve.
Next, using the above mentioned specific choice of γ1 in
equation (7) yields the curve evolution parameters g and
h as some specific functions of K, τ and their derivatives.
Knowing these, τ0 can also be found from the third equal-
ity in equation (4). Thus a set of parameters K, τ , g, h
and τ0 that correspond to a given solution of the integrable
equation has been found. In other words, associated with
this solution, there exists a certain moving space curve
determined using Lamb’s procedure.

This raises the following question: Is this the only pos-
sible curve evolution that one can associate with an in-
tegrable equation, or are there others? We showed re-
cently [3] that there are two other ways of making the
association, which we call formulations II and III respec-
tively, which lead to two other curve evolutions.
Formulation (II): Here, we combine the first two equa-
tions in equation (1) to show that a complex vector
M = (n − it)exp[i

∫
K ds] and a complex function

Φ(s, u) = τ exp
[
i
∫
K ds

]
, (8)

appear in a natural fashion. By writing Ms,bs,Mu and
bu in terms of M and b, setting Msu = Mus, and
equating the coefficients of b and M, respectively, we get

Φu + γ2s + (1/2)
[∫

(γ2Φ
∗ − γ∗2Φ) ds

]
Φ = 0, (9)

where

γ2 = −(τ0 − ih) exp
[
i
∫
K ds

]
. (10)

The subscript 2 is used on γ to indicate formulation (II).
Formulation (III): Here, we combine the first and third
equations of (1), leading to the appearance of a complex
vector P = (t−ib), and a complex function χ given by [12]

χ(s, u) = (K + iτ). (11)

Next, writing Ps,ns,Pu and nu in terms of P and n,
imposing the compatibility condition Psu = Pus, and
equating the coefficients of n and P, respectively, we get

χu + γ3s + (1/2)
[∫

(γ3χ
∗ − γ∗3χ) ds

]
χ = 0. (12)

where

γ3 = −(g + iτ0). (13)

Here, the subscript 3 corresponds to formulation (III).
Since equations (9, 12) have the same form as Lamb’s
equation (6), it is clear that for a suitable choice (see dis-
cussion following Eq. (7)) of γ2 as a function of Φ and its
derivatives, and of γ3 as a function of χ and its derivatives,
these equations can become known integrable equations
for Φ and χ respectively.

Collecting our results, we see from equations (5, 8)
and (11) that the complex functions ψ, Φ and χ that sat-
isfy the integrable equations in the three formulations are
different functions of K and τ . Further, we see from equa-
tions (7, 10) and (13) that the complex quantities γ1, γ2

and γ3 that arise in these formulations also involve differ-
ent combinations of the curve evolution parameters g, h
and τ0. Thus it is clear that these formulations indeed de-
scribe three distinct classes of curve motion that can be
associated with a given integrable equation. (Our analysis
suggests that this association may extend to some par-
tially integrable equations as well.) Next, we apply these
results to the NLS.

3 Application to the NLS

From our discussion given in the last section, it is easy to
verify that in the three formulations, the respective choices

γ1 = −iψs; γ2 = −iΦs; γ3 = −iχs, (14)

when used in equations (6, 9) and (12), lead to the NLS

iqu + qss +
1
2
|q|2q = 0, (15)
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with q identified with the complex functions ψ,Φ and χ
respectively. Now, a general solution of equation (15) is
of the form q = ρ exp[iθ]. Equating this with the complex
functions defined in equations (5, 8) and (11) yields the
curvature and the torsion of the space curves that corre-
spond to that solution of the NLS to be (I) κ1 = ρ, τ1 =
θs, (II) κ2 = θs, τ2 = ρ and (III) κ3 = ρ cos θ, τ3 =
ρ sin θ. Thus clearly, three distinct space curves get associ-
ated with the NLS. However, even if K and τ are known,
to solve the Frenet-Serret equations (1) to find the tangent
t of the curve, (in order to construct from it, the corre-
sponding position vector r(s, u) =

∫
t ds that describes

the moving curve) is usually very cumbersome in general.
In the present context, we shall show that a certain con-
nection of the underlying curve evolutions of the NLS with
the integrable LL equation via three distinct mappings en-
ables us to construct these curves.

To proceed, first we equate the expressions for γ1, γ2

and γ3 given in equation (14) with those given in equa-
tions (7, 10) and (13) and obtain the following curve evo-
lution parameters g, h and τ0 in the three cases:
(I) g1 = −κ1τ1; h1 = κ1s; τ01 = (κ1ss/κ1) − τ2

1 ,
(II) g2 = (τ2ss/τ2) − κ2

2; h2 = −τ2s; τ02 = −κ2τ2,
(III) g3 = −τ3s; h3 = (1/2)(κ2

3 + τ2
3 ); τ03 = κ3s.

Next, substituting these expressions for each of the for-
mulations appropriately in equation (2), and using equa-
tion (1), a short calculation [3] shows that the LL
equation [7]

Su = S × Sss; S2 = 1 (16)

is obtained in every case, i.e., for the tangent t1 of the
moving space curve in the first formulation, for the binor-
mal b2 in the second, and by the normal n3 in the third. Of
the above, the first is just the converse of Lakshmanan’s
mapping [8] where, starting with the LL equation (16),
and identifying S with the tangent to a moving curve,
it becomes possible to obtain the NLS for ψ. The other
two clearly represent new geometries connected with the
NLS. Furthermore, the converses of these two also hold
good, i.e., starting with (16) and identifying S with b and
n successively, we can show that the NLS for Φ and χ
are obtained, respectively. These are the two analogs of
Lakshmanan’s mapping. Next, we exploit these connec-
tions with equation (16) to find the moving space curves
associated with the NLS.

The LL equation (16) has been shown to be completely
integrable [13] and gauge equivalent [14] to the NLS. Its
exact solutions can be found [13,15]. We now show how
r1, r2 and r3, the position vectors generating the three
moving curves underlying the NLS, can be found in terms
of an exact solution S of equation (16).

(I) Let t1 be the tangent to a certain moving curve created
by a position vector r1(s, u). Thus we set t1 = r1s = S,
a solution of the LL equation. Now, the corresponding
triad (t1,n1,b1) of this curve satisfies the Frenet-Serret
equations (1) with curvature κ1 and torsion τ1. In terms of

t1 (and hence S), these are given by the usual expressions

κ1 = |t1s| = |Ss|; τ1 =
t1 · (t1s × t1ss)

t2
1s

=
S · (Ss × Sss)

S2
s

·
(17)

Thus the underlying moving curve r1(s, u) in this formu-
lation is simply given in terms of the solution S by

r1(s, u) =
∫

t1 ds =
∫

S(s, u) ds. (18)

The above expression for r1 is the surface that one obtains
using Sym’s [5] method.
(II) Let the binormal of some moving curve r2(s, u) be
denoted by b2. For this case, b2 = S. Here, the tangent
t2 = r2s. The triad (t2,n2,b2) satisfies equation (1) with
curvature κ2 = b2 · (b2s × b2ss)/|b2s|2 = τ1 and tor-
sion τ2 = κ1. (See Eq. (17).) Using t2 = n2 × b2 =
−b2 × b2s/|b2s| = −S × Ss/|Ss|, the position vector
r2(s, u) generating the second moving curve is found to be

r2(s, u) =
∫

t2 ds = −
∫

S× Ss

|Ss| ds. (19)

(III) Finally, let the normal of yet another moving curve
r3(s, u) be denoted by n3. So we have n3 = S. The tangent
of this curve is t3 = r3s, and the triad (t3,n3,b3) satis-
fies equation (1) with curvature κ3 and torsion τ3. Here,
clearly, we need the expressions for t3 in terms of n3 and
its derivatives. From equation (1) for this case,

(
κ2

3 + τ2
3

)
t3 = τ3 (n3 × n3s) − κ3n3s. (20)

Next we find κ3 and τ3 interms of n3 by showing that
(n3s)2 = (κ2

3 + τ2
3 ) = κ2

1 and n3 · (n3s × n3ss)/|n3s|2 =
τ1 = d

ds(tan−1(τ3/κ3)). Using |n3s| = κ1, a short calcu-
lation yields κ3 = κ1 cos η1 and τ3 = κ1 sin η1, where
η1 = [

∫
τ1 ds + c1(u)]. Here, c1(u) is a function of

time u, which can be found in terms of κ1 and τ1 using
the appropriate equation (4) for κ3u and τ3u. These details
will be given elsewhere. Substituting the above values for
κ3 and τ3 into equation (20), and setting n3 = S, the posi-
tion vector r3(s, u) creating the third moving space curve
can be found to be

r3(s, u) =
∫

t3 ds =
∫

[(S × Ss) sin η1 − Ss cos η1])
κ1

ds ·
(21)

4 Example: Soliton geometries

Defining three orthogonal unit vectors ê1 =
{

1, 0, 0
}
,

ê2 =
{

0, cosη, sin η
}
, ê3 =

{
0,− sin η, cos η

}
, a soliton

solution of the LL equation (16) is given by

S(s, u) = (1 − µνsech2(νξ))ê1

+ µνsech(νξ) tanh(νξ)ê2 − µλsech(νξ)ê3 (22)
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Fig. 1. Surface swept-out by the moving space curve r1(s, u)
(Eq. (23)) for ν = 1 and 0 ≤ u ≤ 6.3.

Fig. 2. Surface swept-out by the moving space curve r2(s, u)
(Eq. (24)) for ν = 0.5 and 0 ≤ u ≤ 25.

where ξ = (s − 2λu), η = (λs + (ν2 − λ2)u), and µ =
2ν/(ν2 + λ2). Here, ν and λ are arbitrary constants. Us-
ing equation (22) and our results of the previous section,
the three moving curves that correspond to the soliton
solution q = ρ exp iθ = 2νsech(νξ) exp iη of the NLS
(Eq. (15)) are found by substituting equation (22) in equa-
tions (18, 19) and (21), respectively. For the sake of il-
lustration, let us consider the special case λ = 0, which
corresponds to the velocity of the envelope of the NLS soli-
ton being zero. We obtain the following three swept-out
surfaces:

(I) r1 = [s− (2/ν)tanhνs, (−2/ν)sechνs cos ν2u,
(−2/ν)sechνs sin ν2u]. (23)

Note that κ1 = 2νsech(νs) and τ1 = 0. This surface is
given in Figure 1.

(II) r2 = s
[
0, sin ν2u, − cos ν2u

]
. (24)

Here, κ2 = 0 and τ2 = 2νsech(νs). For the sake of com-
pleteness, we display this planar surface in Figure 2.

(III) r3 =
[
(2/ν)sechνs cos(ν2u), (s− (2/ν) tanh νs

cos2(ν2u)),−(2/ν) tanh νs cos(ν2u) sin(ν2u)
]
. (25)

Here, κ3 = 2νsechνs cos ν2u and τ3 = 2νsechνs sin ν2u.
This surface is given in Figure 3.

For the case λ �= 0, the envelope of the NLS soliton
moves. Geometrically, this motion can be shown to cor-
respond to the “twisting out” of the surface in Figure 1,
around its symmetry axis, and “stacking up” of more such
surfaces in a helical fashion along this axis. This leads to
corresponding changes in Figures 2 and 3 as well. The
details of this will be presented elsewhere.

Fig. 3. Surface swept-out by the moving space curve r3(s, u)
(Eq. (25)) for ν = 0.5 and 0 ≤ u ≤ 25.

Before we conclude, we mention that the geometry un-
derlying the NLS can also be studied by working with
the complex conjugates of the complex vectors and func-
tions that we used in the three formulations. These can
be shown to lead to a mapping to the LL equation for
−t, −n and −b respectively. It can be verified that these
merely yield surfaces which are created by the negative
of the position vectors ri, i = 1, 2, 3, which we found in
Section 3, so that essentially no new surfaces result from
these. Finally, while in the first formulation, it can be eas-
ily verified that the curve velocity r1u satisfies the local
induction equation [11] r1u = κ1b1, the velocities r2u and
r3u appearing in the other two formulations can be shown
to satisfy more complicated equations. These general re-
sults on curve kinematics and their ramifications are re-
ported in [16].
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